Abstract

From a neuronal cDNA library of the cockroach Periplaneta americana we isolated a 3585-bp cDNA sequence encoding Periplaneta transient receptor potential gamma (pTRPgamma), a protein of 1194 amino acids showing 65% identity to the orthologous Drosophila channel protein dTRPgamma. Heterologous expression of pTRPgamma in HEK293 cells produced a constitutively active, non-selective cation channel with a Ca2+:Na+ permeability ratio of 2. In contrast to dTRPgamma-mediated currents, pTRPgamma currents were partially inhibited by 8-bromo-cAMP, and this effect was not mediated by protein kinase A (PKA) activation. pTRPgammab, a truncated pTRPgamma splice variant missing most of the C terminus, was insensitive to 8-bromo-cAMP. Thus, the critical cAMP-binding site seems to be located in the C-terminal part of pTRPgamma, although there is no common cAMP-binding consensus sequence. While dTRPgamma is only expressed in the photoreceptors, pTRPgamma is expressed throughout the nervous system. In particular it is expressed in dorsal unpaired median (DUM) neurons. In these octopamine-releasing, neurosecretory cells a Ca2+ background current contributing to pacemaker activity was found to be up-regulated by the reduction of cAMP level. In addition, the Ca2+ background current was inhibited by LOE-908, 2-APB, and La3+, which similarly affected the pTRPgamma current. We thus propose that the pTRPgamma protein is involved in forming the channel passing the Ca2+ pakemaking background current in DUM neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.