Abstract
Image segmentation lays the foundation for many high-stakes vision applications such as autonomous driving and medical image analysis. It is, therefore, of great importance to not only improve the accuracy of segmentation models on well-established benchmarks, but also enhance their robustness in the real world so as to avoid sparse but fatal failures. In this paper, instead of chasing state-of-the-art performance on existing benchmarks, we turn our attention to a new challenging problem: how to efficiently expose failures of “top-performing” segmentation models in the real world and how to leverage such counterexamples to rectify the models. To achieve this with minimal human labelling effort, we first automatically sample a small set of images that are likely to falsify the target model from a large corpus of web images via the maximum discrepancy competition principle. We then propose a weakly labelling strategy to further reduce the number of false positives, before time-consuming pixel-level labelling by humans. Finally, we fine-tune the model to harness the identified failures, and repeat the whole process, resulting in an efficient and progressive framework for troubleshooting segmentation models. We demonstrate the feasibility of our framework using the semantic segmentation task in PASCAL VOC, and find that the fine-tuned model exhibits significantly improved generalization when applied to real-world images with greater content diversity. The code is available at https://github.com/VITA-Group/Troubleshooting_Image_Segmentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.