Abstract
Simple SummaryIn the present study, the acceleration occurring during trot on asphalt with two types of horseshoes were compared in horses commonly used for carriage driving in the city of Vienna. Both types of shoes were nailed onto the hooves; one shoe was a traditional steel shoe, while the other one was a steel shoe whose ground surface was covered with soft polyurethane (PU). Four horses were used to measure hoof accelerations during trotting in hand on an asphalt track, similar to a city street. With the polyurethane-covered shoes, hooves experienced less abrupt deceleration during landing; moreover, they also experienced more acceleration after push off from the ground. Front and hind hooves showed similar accelerations when shod with the polyurethane-covered shoe, while front hooves were undergoing harder deceleration than hind hooves when shod with the traditional steel shoe. Finally, with the softer shoes horses trotted faster and with longer strides than with the steel shoes. This indicates that PU shoes may aid in reducing the overload present in the front limbs of horses.The present study investigated accelerations of the front and hind hooves of horses comparing two different shoe types. A standard steel shoe, with studs, pins, and in some instances with toe grabs, was compared to a steel shoe covered on the bottom with a layer of polyurethane. Four horses were used; they trotted in hand on an asphalt track at their self-selected speed. The results showed significantly reduced decelerations during the stance phase with the polyurethane-covered shoes (10th percentile median steel −2.77 g, polyurethane −2.46 g; p = 0.06) and significantly increased decelerations in front hooves compared to hind hooves with steel shoes (70th percentile median −1.04 g front hooves, 0.12 g hind hooves, p = 0.04). Horses trotted faster using longer strides with the polyurethane-covered shoes compared to the steel shoes. The results show that effects of shoe types should be investigated simultaneously in front and hind hooves, and that PU shoes may aid in reducing the overload present in the front limbs of horses.
Highlights
Horses play an important role for humans [1]
Ranking the accelerometry results of the horses and comparing these ranks to the order in which they were measured showed that the order of measurement had no apparent influence on the accelerometry results
11 consecutive lengths, and in one horse, due to the loss of transmission of one accelerometer during the measurement, only nine consecutive lengths of trot were available, a total of 42 lengths were available for the ST condition
Summary
Different from other species used for, e.g., meat, milk and eggs or wool, the domestication of horses was mainly based on the need for work in the field, as well as transport of goods and humans. This is still the most important selection criterion in horse breeding today, as horses are kept for work as well as for athletic purposes [1]. Anatomical markers and video-based motion analysis systems have been used in combination with accelerometry [5,13]. Comparing these methods for the investigation of hoof slippage on soft ground, accelerometry has been shown to be superior to kinematic techniques [14]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.