Abstract
Tropomyosins are believed to function in part by stabilizing actin filaments. However, accumulating evidence suggests that fundamental differences in function exist between tropomyosin isoforms, which contributes to the formation of functionally distinct filament populations. We investigated the functions of the high-molecular-weight isoform Tm3 and examined the molecular properties of Tm3-containing actin filament populations. Overexpression of the Tm3 isoform specifically induced the formation of filopodia and changes in actin solubility. We observed alterations in actin-binding protein recruitment to filaments, co-incident with changes in expression levels, which can account for this functional outcome. Tm3-associated filaments recruit active actin depolymerizing factor and are bundled into filopodia by fascin, which is both up-regulated and preferentially associated with Tm3-containing filaments in the Tm3 overexpressing cells. This study provides further insight into the isoform-specific roles of different tropomyosin isoforms. We conclude that variation in the tropomyosin isoform composition of microfilaments provides a mechanism to generate functionally distinct filament populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.