Abstract
In this paper, we study tropicalisations of singular surfaces in toric threefolds. We completely classify singular tropical surfaces of maximal-dimensional type, show that they can generically have only finitely many singular points, and describe all possible locations of singular points. More precisely, we show that singular points must be either vertices, or generalized midpoints and baricenters of certain faces of singular tropical surfaces, and, in some cases, there may be additional metric restrictions to faces of singular tropical surfaces.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have