Abstract

Global environmental change has recently pushed the scientific community in the quest for more comprehensive spatial information on the continental biosphere. In terms of climate change, ecosystem monitoring has become one of the priorities to better understand the evolution of terrestrial carbon stocks, as well as to foster conservation policies for these carbon stocks. According to IPCC (2002), deforestation and land clearing activities, mostly from sub-tropical regions, contributed with one fifth of the greenhouse gas emission during the 1990s. The tropical dry forests are one of the most extended tropical forested ecosystems, and yet have received only recent attention from the scientific community. This ecosystem is also scarcely represented in the international protection schemes, which perhaps causes increased vulnerability of this ecosystem to the tropical fingerprint of global human development. Additionally, the climatic conditions are relatively attractive for human settlement and the ecosystem has historically supported dense agriculture activity. In megadiverse Mexico for example, these forests extend up to 60% of tropical forests, and an estimated 30% of this extent is considered as highly modified under anthropic pressure. The annual deforestation rate of the deciduous tropical dry forest in Mexico has been evaluated at around 1.4 2 %. The contribution of the latter to climate change is manifolds, including carbon emissions, increased albedo and regional hydrographic cycle alteration. Moreover, the very loss of biodiversity derived from the conversion of forest to grassland for pasture is considered as a triggering factor for future forest fires and conversion to more grassland. The monitoring and analysis of the forest distribution pattern, including phenological and anthropogenic modifications, contributes to the uneasy task of slowing down the tendency of forest loss. Remote sensing has proved a fundamental tool for such monitoring, owing to its contribution to the study and understanding of the global environment through time, and the calibration of models which help building environmental scenarios in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call