Abstract
In this review, advances in the understanding of the controlling factors and physical mechanisms of tropical cyclogenesis (TCG) are summarized from recent (2018–2022) research on TCG, as presented in the Tenth International Workshop on Tropical Cyclones (IWTC-10). Observational, theoretical, and numerical modeling studies published in recent years have advanced our knowledge on the influence of large-scale environmental factors on TCG. Furthermore, studies have shown clearly that appropriate convective coupling with tropical equatorial waves enhances the development chances of TCG. More recently, illuminating research has been carried out on analyzing the mechanisms by which oscillations and teleconnections (El Niño Southern Oscillation (ENSO) in particular) modulate TCG globally, in association with changes in the sea surface temperature (SST). In addition to this, recent research has diligently addressed different aspects of TCG. Multiple studies have reported the applicability of unified theories and physical mechanisms of TCG in different ocean basins. Recently, research has been carried out on TCG under different flow pattern regimes, dry air intrusion, importance of marsupial pouch, genesis of Medicanes, wind shear, convection and vertical structure. Furthermore, studies have discussed the possibility of near equatorial TCG provided that there is enough supply of background vertical vorticity and relatively low vertical wind shear. Progress has been made to understand the role of climate change on global and regional TCG. However, there are still significant gaps which need to be addressed in order to better understand TCG prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.