Abstract

Correlations between geophysical parameters and tropical cyclones are essential in understanding and predicting the formation of tropical cyclones. Previous studies show that sea surface temperature and vertical wind shear significantly influence the formation and frequent changes of tropical cyclones. This paper presents the utilization of a new approach, data mining, to discover the collective contributions to tropical cyclones from sea surface temperature, atmospheric water vapor, vertical wind shear, and zonal stretching deformation. A decision tree using the C4.5 algorithm was generated to illustrate the influence of geophysical parameters on the formation of tropical cyclone in weighted correlations. From the decision tree, we also induced decision rules to reveal the quantitative regularities and co-effects of [sea surface temperature, vertical wind shear], [atmospheric water vapor, vertical wind shear], [sea surface temperature, atmospheric water vapor, zonal stretching deformation], [sea surface temperature, vertical wind shear, atmospheric water vapor, zonal stretching deformation], and other combinations to tropical cyclone formation. The research improved previous findings in (1) preparing more precise criteria for future tropical cyclone prediction, and (2) applying data mining algorithms in studying tropical cyclones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.