Abstract
The Longqi vent field, situated on the Southwest Indian Ridge, is ecologically distinct among known hydrothermal vents fields. It hosts a combination of previously unknown species and those shared at species or genus level with other hydrothermal vents on the Central Indian Ridge (CIR) and East Scotia Ridge (ESR). We investigate the size-based and trophodynamics of consumers at Longqi vent field and compared these with ESR and CIR vent fields using stable isotope analysis. Intra-specific variability in δ13C and δ15N values in relationship to shell length was observed in Gigantopelta aegis but absent in Chrysomallon squamiferum. A model-based clustering approach identified four trophic groupings at Longqi: species with the lowest δ13C values being supported by carbon fixed via the Calvin–Benson–Bassham cycle, the highest δ13C values being supported by the reductive tricarboxylic acid cycle and intermediate values potentially supported by a mix of these primary production sources. These clusters were driven by potential differences in resource partitioning. There were also differences in the spread of stable isotope values at the vent field level when comparing Bayesian stable isotope ellipse areas among Longqi, CIR and ESR vent fields. This was driven by a combination of the range in δ13C value of macrofauna, and the negative δ15N values which were only observed at Longqi and CIR vent fields. Many of the shared species or genera showed inter-vent field differences in stable isotope values which may be related to site-specific differences in food sources, geochemistry or potential intra-field competition. This study provides important information on the trophic ecology of hydrothermal vent macrofauna found within an area of seabed that is licensed for seabed mining exploration.
Highlights
ObjectivesThe aims of this research are: (1) to investigate the size-based trophic ecological interactions in Gigantopelta aegis (Mollusca; Gastropoda) and C. squamiferum; (2) to investigate trophic interactions at Longqi vent field; and (3) to compare the trophic structure of the Longqi vent field with that of the East Scotia Ridge (ESR) and Central Indian Ridge (CIR) vent fields
Deep-sea hydrothermal vents are patchy, ephemeral habitats that occur along tectonically or volcanically active midocean ridges, back-arc spreading centres and seamounts (Tunnicliffe et al 2003; Staudigel et al 2006)
The Generalized linear models (GLM) estimated a difference between oesophageal gland and foot of 2.2‰ (± 0.2 standard error (SE)) for δ13C, which was similar to that observed in C. squamiferum
Summary
The aims of this research are: (1) to investigate the size-based trophic ecological interactions in Gigantopelta aegis (Mollusca; Gastropoda) and C. squamiferum; (2) to investigate trophic interactions at Longqi vent field; and (3) to compare the trophic structure of the Longqi vent field with that of the ESR and CIR vent fields
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have