Abstract

Transferrin and specific transferrin receptors are demonstrated on the microvillous surface of syncytiotrophoblast in human immature and term placentae by immuno histological techniques with the use of light and electron microscopy. That the distribution of transferrin is limited to the materno-foetal interface supports the hypothesis that binding of maternal transferrin to trophoblast receptors is involved in the process of iron transport to the foetus. Parallel studies with baboon placentae demonstrate the presence of trophoblast receptors which bind both baboon and human transferrin, thereby putting forward an experimental model which might be used to test the biological significance of placental transferrin receptors in primates. In addition, investigation of a large number of human cell lines shows that many transformed cells, but no normal cells (such as blood lymphocytes) or cells from primary culture (such as neonatal foreskin fibroblasts), possess the ability to bind transferrin to their membranes. These findings suggest that transferrin receptors may play important biological roles in addition to that of iron transport from mother to foetus. One such role could be the limitation of iron in intervillous spaces, thus depriving iron-requiring microorganisms of iron, hence serving as a non-specific factor of resistance for placentae. Another role for foetal transferrin receptors on trophoblasts could be to bind maternal transferrin at the materno-foetal interface, thus frustrating maternal immunosurveillance. This is similar to a mechahism used by schistosomes in the host-parasite relation where host proteins are bound by the parasite to escape immunological recognition. The presence of transferrin receptors on transformed cells suggests that this mechanism might also be employed by tumour cells. Finally, in view of previous studies which show that transferrin is required by stimulated lymphocytes to pass from the G1 to the S phase of cellular replication, it is proposed that trophoblast transferrin receptors could limit the amount of transferrin in intervillous spaces and thus impede the proliferation and possible cytotoxicity of maternal activated lymphocytes at the materno-foetal interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.