Abstract
Injection of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) into the animal pole of Xenopus oocytes induced membrane depolarization due to the internal mobilization of calcium, which activates a chloride conductance. Repetitive injections of Ins(1,4,5)P3 results in desensitization probably as a result of depletion of the internal store of calcium. Desensitization was restricted to the region surrounding the site of injection. Injection of Ins(1,4,5)P3 at one position induced desensitization, which failed to spread to a neighbouring region (ca. 200 microns away). Even when sufficient Ins(1,4,5)P3 was injected to induce calcium oscillations, there was still no evidence for the effects of Ins(1,4,5)P3 spreading to neighbouring regions. The fact that periodic calcium transients could also be established by the repetitive injection of small amounts of Ins(1,4,5)P3 suggests that calcium oscillations may also be localized. It is concluded that the Ins(1,4,5)P3-sensitive store of calcium comprises separate local compartments that can be activated independently of each other.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of London. Series B, Biological sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.