Abstract
Ocean plastic pollution is a global concern, exacerbated by the distinctive physiochemical characteristics of nanoplastics (NPs), making it crucial to study the impacts on marine animals, particularly fish, given their ecological and economic importance. Both trophic transfer and waterborne exposure are potential modes of NP entry into seafood for human consumption Although the majority of studies have focused on in-vitro impacts of NP exposure in fish, in-vivo methods can offer a more holistic understanding of these impacts. This study investigates polystyrene NP transfer to Coryphaena hippurus (mahi-mahi) larvae, a widely consumed fish and significant marine predator, during the early life stage. Brachionus plicatilis (rotifers) were exposed to NPs, and subsequently fed to C. hippurus larvae, with exposure duration ranging from 24 to 96 h. Significant NP transfer was observed via the food chain, varying with exposure duration. A depuration study over 72 h, simulating intermittent NP exposure, revealed substantial NP excretion but also notable retention in the larvae. Biodistribution analysis indicated that most NPs accumulated in the gut, with a significant portion remaining post-depuration and some translocating to other body areas containing vital organs like the heart, liver, and gall bladder. Despite no significant effects on body length and eye diameter during this short study period, histopathological analysis revealed intestinal tissue damage in the larvae. Overall, this study provides valuable insight into the trophic transfer of NPs in marine food webs, emphasizing the need for further research on ecological impacts and highlighting the importance of addressing NP contamination to protect marine ecosystems and food safety.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have