Abstract
AbstractAim To investigate how reef fish trophic structure responds to latitudinal changes, using a simple model: the extensive Brazilian coast.Location Six Brazilian tropical and subtropical coral and rocky coastal reefs, and the oceanic island of Atol das Rocas, between latitudes 0° and 27° S.Methods Underwater visual census data collected by the authors (five locations) or obtained from the literature (two locations) were used to estimate the relative abundance of 123 fish species belonging to 33 reef‐associated families. Cryptic species were excluded from the analysis. Fishes were grouped in eight trophic categories: roving herbivores, territorial herbivores, mobile invertebrate feeders, sessile invertebrate feeders, omnivores, planktivores, piscivores and carnivores. After a series of detailed predictions based on phylogeny, physiological constraints and anthropogenic impacts was established, the community trophic structure was analysed along a latitudinal gradient and among coastal, mid‐shore and oceanic sites.Results The trophic structure of Brazilian reef fish assemblages clearly changed with latitude. Roving herbivores such as scarids and acanthurids were proportionally more abundant at low latitudes. The browsing herbivores kyphosids followed an opposite latitudinal pattern. The parrotfish genus Sparisoma, more plastic in its feeding habits than Scarus, presented wider distribution. The relative abundance of territorial herbivores did not decrease towards higher latitudes. Mobile invertebrate feeders were the most important (in low latitudes) or the second most important trophic guild (in high latitudes) at all coastal sites. Sessile invertebrate feeders did not show any clear latitudinal trend, despite an expected increase in abundance towards low latitudes. Omnivores dominated high latitude reefs (27° S) and planktivores the oceanic island Atol das Rocas. Piscivores and carnivores were proportionally better represented in high latitudes.Main conclusions Latitudinal patterns seem to be influenced by phylogeny, physiological constraints (mainly related to temperature), and also by anthropogenic impacts. Grazing scarids and acanthurids are largely restricted to tropical reefs and show an abrupt decline beyond 23° S. This does not reflect the amount of algae present, but probably temperature‐dependent physiological constraints. Other herbivores seem to overcome this through symbiotic microbial digestive processes (kyphosids), manipulating the structure of algal turfs or increasing animal protein from within the territory (pomacentrids). Omnivores dominate the southern sites Arraial do Cabo and Arvoredo, being more adapted to environment constraints related to seasonal and/or stochastic shifts. Large carnivores (including piscivores) extend farther into high‐latitude habitats, apparently not constrained by thermal thresholds that limit the herbivores. Overfishing and/or ornamental harvesting certainly has been modifying local fish communities, but could not be detected properly at the large‐scale patterns found in this study. The data presented put in evidence for the first time how reef fish trophic structure behave in the extensive south‐western Atlantic latitudinal gradient.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have