Abstract
Octocorals are common components of sublittoral benthic communities in temperate, tropical and polar areas. However, their natural diets and feeding rates are poorly known. The aim of this study was to determine qualitatively–quantitatively the diet of the octocoral Carijoa riisei (snowflake coral) and analyse the distribution and diet composition throughout a whole year at two different depths of the same environment. Hence, 30 colonies were haphazardly sampled for gastric content analysis from 2 and 6 m deep (surface and bottom) at Porto de Galinhas beach, Pernambuco, Brazil, in January, June and October 2006, and March 2007. Relative and absolute abundance, richness and occurrence frequency per gastric cavity were assessed. Shannon–Wiener index (H′) and evenness were also calculated. Items were classified according to the occurrence frequency. The biovolume of preys was estimated from meristic data, and from the biovolume were then estimated wet weight, dry weight and organic carbon. Weighed biovolume (WBV), which relates biomass and abundance, was assessed to estimate the real contribution of preys to octocoral diet. Results attested the presence of 102 phytoplankton and 25 zooplankton taxa. Mean prey size was 112.7 µm. Diatoms showed the greater richness with 88 morphotypes. Only cyanophytes and diatoms, from phytoplankton, were very common (>70%). As a whole, phytoplankton was also the most abundant group (83%), followed by crustacean fragments (5%). Thus, although having low biovolume (<0.09 mm3×10−3), the phytoplankton showed the highest WBV (44.5%). Feeding items richness was homogeneous throughout the study year and in both depths, while abundance showed significant seasonal and bathymetric fluctuation. The t-test (Hutchinson) found significant differences for prey item diversity related to depth and season. From the analysis, it is possible to conclude that the C. riisei population of the Brazilian north-eastern coast is polyphagous, but shows preference for phytoplanktonic elements and small prey. Therefore, the species behaves as a passive suspensivorous feeder with equitable biomass contribution from phytoplankton and zooplankton.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have