Abstract

Let $k$ a field of characteristic zero. Let $X$ be a smooth, projective, geometrically rational $k$-surface. Let $\mathcal{T}$ be a universal torsor over $X$ with a $k$-point et $\mathcal{T}^c$ a smooth compactification of $\mathcal{T}$. There is an open question: is $\mathcal{T}^c$ $k$-birationally equivalent to a projective space? We know that the unramified cohomology groups of degree 1 and 2 of $\mathcal{T}$ and $\mathcal{T}^c$ are reduced to their constant part. For the analogue of the third cohomology groups, we give a sufficient condition using the Galois structure of the geometrical Picard group of $X$. This enables us to show that $H^{3}_{nr}(\mathcal{T}^{c},\mathbb{Q}/\mathbb{Z}(2))/H^3(k,\mathbb{Q}/\mathbb{Z}(2))$ vanishes if $X$ is a generalised Ch\^atelet surface and that this group is reduced to its $2$-primary part if $X$ is a del Pezzo surface of degree at least 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.