Abstract

Doğal dil işlemenin(Natural Language Processing-NLP) ve metin sınıflandırmanın önemli araştırma alanlarından biri de duygu analizidir. Bu alanda çalışmalar hızla büyümektedir. Bu teknik dijital yaşamın her çeşit uygulama alanında kendini göstermektedir. Duygu analizi için geliştirilen birçok teknik vardır ancak son zamanlarda doğal dil işlemenin kelime vektör modeli metotları duygu analizinde yaygın olarak kullanılmaya başlamıştır. Word2Vec kelimeleri anlamlı vektörlere dönüştürebilen en kullanışlı kelime vektör modeli yöntemleri arasındadır. Bu yöntem ile kelime vektörleri oluşturabilmek için büyük kelime havuzlarına ihtiyaç vardır. Önceden eğitilmiş modeller duygu analizinde daha doğru sonuçlara ulaşabilmeyi mümkün kılarlar. Bu çalışmada duygu analizinde incelenmek üzere, onaylanmış kullanıcıların Türkçe otel yorumları veri kazıma yöntemleri ile toplanmıştır. Elde edilen bu özgün veriler Word2Vec ile eğitilerek kelime vektörleri oluşturulmuştur. Bu vektörler ile tekrarlanan yapay sinir ağının (Recurrent Neural Networks-RNN) bir çeşidi olan geçitli tekrarlayan birimler (Gated Recurrent Unit-GRU) ile bir sınıflandırma modeli geliştirilmiştir. Daha geniş kelime torbalarıyla eğitilmiş kelime vektörleri ile rastgele değerler atanarak oluşturulan vektörler, aynı derin öğrenme yöntemiyle yeniden incelenmiş ve elde edilen sınıflandırma başarıları karşılaştırılmıştır. Elde edilen sonuçlara göre özel alandan bağımsız, daha geniş kapsamlı kelime torbalarının sınıflandırma başarısını arttırdığı gözlemlenmiştir.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.