Abstract
In this study, the target molecule ethyl-2-(5-nitro-5'-(4-nitrophenyl)-2-oxo-3'H-spiro[indoline-3,2'-[1,3,4]oxadiazol]-1-yl)acetate, which is a spiroindoline derivative, were performed NBO analysis, molecular electrostatic potential surface (MEPS), nonlinear optics (NLO), HOMO-LUMO energy calculations, optimized molecular geometry, and mulliken atomic charges using B3LYP/B3PW91 basis set and 6-311G(d,p) approximations. Calculated results were reported. Density Functional Theory (DFT) computations were utilized to research the molecule theoretically. Moreover, molecular docking analysis of the tested compound, a spiroindoline derivative molecule targeting aldose reductase against diabetic complications, was performed using molecular docking to determine the structure-activity connection. The molecular docking study provided important information worth considering for further research. A notable outcome of bioisosteric and isosteric substitutions is the alteration in lipophilic character, an impressive characteristic in several aspects. Thus, utilizing SwissADME, lipophilic character assessments were performed for the concerned compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.