Abstract
An underground nuclear test named Gasbuggy was conducted in northwestern New Mexico in 1967. Subsequent groundwater monitoring in an overlying aquifer by the U.S. Environmental Protection Agency revealed increasing levels of tritium in monitoring well EPNG 10-36, located 132 m from the test, suggesting migration of contaminants from the nuclear cavity. There are three basic scenarios that could explain the occurrence of tritium in well 10-36: (1) introduction of tritium into the well from the land surface, (2) migration of tritium through the Ojo Alamo Formation, and (3) migration through the Pictured Cliffs Formation. The two subsurface transport scenarios were evaluated with a travel time analysis. In one, transport occurs to the Ojo Alamo sandstone either up the emplacement hole or through fractures created by the blast, and then laterally through the aquifer to the monitoring well. In the other, lateral transport occurs through fractures in the underlying Pictured Cliffs detonation horizon and then migrates up the monitoring well through plugged casing connecting the two formations. The travel time analysis indicates that the hydraulic conductivity measured in the Ojo Alamo Formation is too low for lateral transport to account for the observed arrival of tritium at the monitoring well. This suggests transport either through fractures intersecting the Ojo Alamo close to well EPNG 10-36, or through fractures in the Pictured Cliffs and up through the bottom plug in the well. The transport scenarios were investigated using hydrologic logging techniques and sampling at the monitoring well, with the fieldwork conducted after the removal of a string of 0.05-m-diameter tubing that had previously provided the only monitoring access.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have