Abstract

Tritium adsorption in the irradiation defects of the Li2ZrO3 is a fundamental problem to understand the tritium behavior during the release process. A comprehensive computational study of tritium/helium adsorption in the lithium vacancy of bulk Li2ZrO3 is presented by the density functional theory calculations. The most stable tritium adsorption position has been found and it is determined by the neighboring lithium–oxygen interactions. The results reveal that the intrinsic defect is the lithium vacancy with one electron and it transforms to be the neutral state after a tritium atom is adsorbed. Moreover, helium is adsorbed almost in the center of lithium vacancy without bonding with surrounding oxygen atoms, which could diffuse easily in the bulk Li2ZrO3. Therefore, we predict that the intrinsic Li vacancy tends to adsorb a positive ion T[Formula: see text] other than a neutral T atom. Our results provide theoretical support to understand the T behavior in the Li2ZrO3 crystal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call