Abstract
Broadening the charging and discharging voltage window of high nickel cathode material NCM811 is the most expected method to improve the high specific energy density of batteries currently, yet the cathode-electrolyte interface (CEI) formed by the oxidized and decomposed products of carbonate-based electrolyte under high voltage are always so unsatisfied. Therefore, a voltage-stabilizer, TPFPB (Tris(pentafluoro)phenylborane), added into baseline electrolyte (1 M LiPF6 in EC:EMC:DMC=1:1:1 vol%) to promote the electrochemical performance of the battery at 4.5 V. The results interpret that the TPFPB-contained NCM811-Li half-cells exhibit high specific capacity (167.10 mAh/g), excellent capacity retention rate (CRR) (75.37 %), and high rate performance (173.3 mAh/g at 5C) during 4.5 V. Meanwhile, through the analysis of the physical characterization techniques. the B- and F-rich interfacial layer, named as CEI film, existing at the interface between the cathode and the electrolyte, produced under 4.5 V, is superior, resulting in impeding the structural collapse of the cathode material and the continued dissolution of transition metal ions (TMn+) from the cathode material, as well as, ameliorate the electrochemical polarization of the battery, ultimately, it can stabilize the electrochemical performance of the battery under high voltage. Therein, the present work elucidate a new and substantial approach to enhance the high-voltage performances of rich-Ni cathode materials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have