Abstract

Imidazole thiones appear as interesting building blocks for Cu(I) chelation and protection against Cu-mediated oxidative stress. Therefore, a series of tripodal molecules derived from nitrilotriacetic acid appended with three imidazole thiones belonging either to histamine-like or histidine-like moieties were synthesized. These tripods demonstrate intermediate affinity between that previously measured for tripodal analogues bearing three thiol moieties such as cysteine and those grafted with three thioethers, like methionines, consistently with the thione group in the imidazole thione moiety existing as a tautomer between a thiol and a thione. The two non-alkylated tripods derived from thioimidazole, TH and TH* demonstrated three orders of magnitude larger affinity for Cu(I) (logKpH 7.4 = 14.3) than their analogues derived from N,N′-dialkylated thioimidazole TMe and TEt (logKpH 7.4 = 11–11.6). Their efficiency to inhibit Cu-mediated oxidative stress is demonstrated by several assays involving ascorbate consumption or biomolecule damages and correlates with their ability to chelate Cu(I), related to their conditional complexation constants at pH 7.4. The two non-alkylated tripods derived from thioimidazole, TH and TH* are significantly more powerful in reducing Cu-mediated oxidative stress than their analogues derived from N,N′-dialkylated thioimidazole TMe and TEt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call