Abstract
Cu(2+) ions are found concentrated within senile plaques of Alzheimer's disease patients directly bound to amyloid-beta peptide (Abeta) and are linked to the neurotoxicity and self-association of Abeta. The affinity of Cu(2+) for monomeric Abeta is highly disputed, and there have been no reports of affinity of Cu(2+) for fibrillar Abeta. We therefore measured the affinity of Cu(2+) for both monomeric and fibrillar Abeta(1-42) using two independent methods: fluorescence quenching and circular dichroism. The binding curves were almost identical for both fibrillar and monomeric forms. Competition studies with free glycine, l-histidine, and nitrilotriacetic acid (NTA) indicate an apparent (conditional) dissociation constant of 10(-11) M, at pH 7.4. Previous studies of Cu-Abeta have typically found the affinity 2 or more orders of magnitude weaker, largely because the affinity of competing ligands or buffers has been underestimated. Abeta fibers are able to bind a full stoichiometric complement of Cu(2+) ions with little change in their secondary structure and have coordination geometry identical to that of monomeric Abeta. Electron paramagnetic resonance studies (EPR) with Abeta His/Ala analogues suggest a dynamic view of the tetragonal Cu(2+) complex, with axial as well as equatorial coordination of imidazole nitrogens creating an ensemble of coordination geometries in exchange between each other. Furthermore, the N-terminal amino group is essential for the formation of high-pH complex II. The Abeta(1-28) fragment binds an additional Cu(2+) ion compared to full-length Abeta, with appreciable affinity. This second binding site is revealed in Abeta(1-42) upon addition of methanol, indicating hydrophobic interactions block the formation of this weaker carboxylate-rich complex. A Cu(2+) affinity for Abeta of 10(11) M(-1) supports a modified amyloid cascade hypothesis in which Cu(2+) is central to Abeta neurotoxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.