Abstract

The individual sublevel kinetics of the lowest triplet state of tryptophan 54 (Trp 54) which is highly perturbed in the complex of Escherichia coli single-stranded DNA binding protein (Eco SSB) with poly(deoxythymidylic) acid (poly[dT]) have been studied by optically detected magnetic resonance (ODMR) spectroscopy. The triplet sublevel decay constants of Trp 54, kx, ky, kz, are 0.99, 0.072, and 0.045 s-1, respectively, in the poly(dT) complex of a point-mutated Eco SSB in which Trp 88 is substituted by phenylalanine. Tx is the only radiative triplet sublevel. Negative polarity of the Tx----Tz and Tx----Ty phosphorescence-detected ODMR signals results from the steady state population pattern, nx greater than ny, nz, and implies that the relations, px greater than or equal to 14py, and px greater than or equal to 22pz exist for the relative populating rates. Spin-orbit coupling between radiative singlet states and the Tx sublevel of the lowest triplet state of Trp 54 is enhanced selectively upon complexing of Eco SSB with poly(dT).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.