Abstract

Complexes of point-mutated E. coli single-stranded DNA-binding protein (Eco SSB) with homopolynucleotides have been investigated by optical detection of magnetic resonance (ODMR) of the triplet state of tryptophan (Trp) residues. Investigation of the individual sublevel kinetics of the lowest triplet state of Trp residues 40 and 54 in the poly (dT) complex of Eco SSB-W88F,W135F (a mutant protein whose Trp residues at positions 88 and 135 have been substituted by Phe) shows that Trp 54 is the most affected residue upon stacking with thymine bases, confirming previous results based on SSB mutants having single Trp----Phe substitutions. (Zang, L. H., A. H. Maki, J. B. Murphy, and J. W. Chase. 1987. Biophys. J. 52:867-872). The Tx sublevel of Trp 54 shows a fourfold increase in the decay rate constant, as well as an increase in its populating rate constant by selective spin-orbit coupling. The two nonradiative sublevels show no change in lifetime, relative to unstacked Trp. For Trp 40, a weaker perturbation of Tx by thymine results in a sublevel lifetime about one-half that of normal Trp. Trp54 displays a 2[E]transition of negative polarity in the double mutant SSB complex with Poly (dT), but gives a vanishingly weak [D] - [E] signal, thus implying that the steady-state sublevel populations of Tx and Tz are nearly equal in this residue. Poly (5-BrU) induces the largest red-shift of the Eco SSB-W88F,W135F Trp phosphorescence 0,0-band of all polynucleotides investigated. Its phosphorescence decay fits well to two exponential components of 1.02 and 0.12 s, with no contribution from long-lived Trp residues. This behavior provides convincing evidence that both Trp 40 and 54 are perturbed by stacking with brominated uridine. The observed decrease in the Trp [D] values further confirms the stacking of the Trp residues with 5-BrU. Wave-length-selected ODMR experiments conducted on the [D[ + [E] transition of Eco SSB-W88F,W135F complexed with poly(5HgU) indicate the presence of multiple heavy atom-perturbed sites. Measurements made on poly (5-HgU) which each of its 4 Trp residues has been replaced in turn by Phe demonstrate that Trp 40 and 54 are the only Trp residues undergoing stacking with nucleotide bases, as previously proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call