Abstract
Optical detection of triplet-state magnetic resonance (ODMR) is employed to study the complexes formed between gene 32 protein (GP32), a single-stranded DNA-binding protein from bacteriophage T4, and the heavy-atom-derivatized polynucleotides poly(5-HgU) and poly(5-BrU). The triplet-state properties of some of the tryptophan (Trp) residues in the complexes are dramatically different from those in the free protein, in that they are subject to an external heavy-atom effect. Direct evidence for the presence of a heavy-atom effect, and hence a close-range interaction between mercurated or brominated nucleotide bases and Trp residues in the complex, is provided by the observation of the zero-field (D) + (E) ODMR transition of Trp, which is not normally observed in the absence of a heavy-atom perturbation. The amplitude-modulated phosphorescence-microwave double-resonance (AM-PMDR) technique is employed to selectively capture the phosphorescence spectrum originating from the heavy-atom-perturbed Trp residue(s) in the GP32-poly(5-HgU) complex. Arguments based on our experimental results lead to the conclusion that the heavy-atom perturbation arises from aromatic stacking interactions between Trp and mercurated bases. Wavelength-selected ODMR measurements reveal the existence of two environmentally distinct and spectrally different types of Trp in GP32. One of these types is perturbed selectively by the heavy atom and hence undergoes stacking interactions with the heavy-atom-derivatized bases of the polynucleotide while the second type of Trp residue is unaffected.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.