Abstract

This paper reports on the optimisation, characterisation, validation and applicability of gas chromatography coupled to triple quadrupole mass spectrometry in its tandem operation mode (GC-QqQ(MS/MS) for the quantification of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs, dioxins) and dioxin-like polychlorinated biphenyls (DL-PCBs) in environmental and food matrices. MS/MS parameters were selected to achieve the high sensitivity and selectivity required for the analysis of this type of compounds and samples. Good repeatability for areas (RSD = 1–10%, for PCDD/Fs and DL-PCBs) and for ion transition ratios (RSD = 0.3–10%, for PCDD/Fs, and 0.2–15%, for DL-PCBs) and low instrumental limits of detection, 0.07–0.75 pg μL−1 (for dioxins) and 0.05–0.63 pg μL−1 (for DL-PCBs), were obtained. A comparative study of the congener specific determination using both GC-QqQ(MS/MS) and gas chromatography-high resolution mass spectrometry (GC-HRMS) was also performed by analysing several fortified samples and certified reference materials (CRMs) with low (feed and foodstuffs), median (sewage sludge) and high (fly ash) toxic equivalency (TEQ) concentration levels, i.e. 0.60, 1.83, 72.9 and 3609 pg WHO-TEQ(PCDD/Fs) g−1. The agreement between the results obtained for the total TEQs (dioxins) on GC-QqQ(MS/MS) and GC-HRMS in all the investigated samples were within the range of ±4%, and that of DL-PCBs at concentration levels of 0.84 pg WHO-TEQs (DL-PCBs) g−1, in the case of feedstuffs, was 0.11%. Both instrumental methods have similar and comparable linearity, precision and accuracy. The GC-QqQ(MS/MS) sensitivity, lower than that of GC-HRMS, is good enough (iLODs in the down to low pg levels) to detect the normal concentrations of these compounds in food and environmental samples. These results make GC-QqQ(MS/MS) suitable for the quantitative analysis of dioxins and DL-PCBs and a real alternative tool to the reference sector HRMS instruments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.