Abstract

Porcine xenografts lacking swine leukocyte antigen (SLA) class I are thought to be protected from human T cell responses. We have previously shown that SLA class I deficiency can be achieved in pigs by CRISPR/Cas9-mediated deletion of β2 -microglobulin (B2M). Here, we characterized another line of genetically modified pigs in which targeting of the B2M locus did not result in complete absence of B2M and SLA class I but rather in significantly reduced expression levels of both molecules. Residual SLA class I was functionally inert, because no proper differentiation of the CD8+ T cell subset was observed in B2Mlow pigs. Cells from B2Mlow pigs were less capable in triggering proliferation of human peripheral blood mononuclear cells in vitro, which was mainly due to the nonresponsiveness of CD8+ T cells. Nevertheless, cytotoxic effector cells developing from unaffected cell populations (eg, CD4+ T cells, natural killer cells) lysed targets from both SLA class I+ wildtype and SLA class Ilow pigs with similar efficiency. These data indicate that the absence of SLA class I is an effective approach to prevent the activation of human CD8+ T cells during the induction phase of an anti-xenograft response. However, cytotoxic activity of cells during the effector phase cannot be controlled by this approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.