Abstract

AbstractThe present attempt is made to elaborate the features of triple diffusive convective flow of an incompressible nanoliquid induced by horizontal surface under buoyancy forces. The effect of nonlinear thermal radiation is taken into account. Heat flux model of radiation is formulated through Rosseland's approximation. The radiation phenomenon plays a key role in modern solar energy equipment's. The nondimensional variables are introduced to convert the dimensional mathematical expressions into dimensionless single independent variable. Numerical scheme is developed to obtain the solution of mathematical model. The importance of controlling constraints on flow quantities are characterized through plots. The quantities of engineering importance are computed and elaborated graphically. It is noticed that the presence of salts and nanoparticles enhance the thermal performance of base liquid. The liquid temperature and its relevant thickness of thermal layer improved significantly with an increment in the values of radiative parameter. The larger values of parameters of Brownian motion and thermophoretic correspond to higher temperature profiles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call