Abstract

A novel self-healing hydrogel was prepared from a cationic β-cyclodextrin oligomer allyl ether [C(βCD−OM)AE] using a triple cross-linking strategy combining electrostatic interaction, host–guest complexation, and CC bonds as the macrocrosslinker. Here, the C(βCD−OM)AE@Ad gel was successfully prepared by polymerization of synthesized C(βCD−OM)AE, 1-adamantyl acrylate, and acrylic acid. The triple cross-linked hydrogel shows multi-functionality of high mechanical strength, enhanced stability, cytocompatibility, pH responsiveness as well as self-healing ability. Based on the cooperative and synergetic forces of non-covalent and covalent bonds, the C(βCD−OM)AE@Ad gel shows a high tensile strain up to 1,590%, and the self-healed gel could restore up to 84% of its initial length within 24 h. Furthermore, drug release in the hydrogel was controlled by the surrounding pH and slowly released. The present work reveals the cooperativity of multiple cross-links for a 3D structured polymeric material, and the developed self-healable hydrogel can possibly be applied in various biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.