Abstract

An image encryption algorithm to secure three color images simultaneously by combining scrambling with the reality-preserving fractional discrete cosine transform (RPFrDCT) is proposed. The three color images to be encrypted are converted to their indexed formats by extracting their color maps, which can be considered as the three components of a color image. These three components are affected each other by scrambling the interims obtained from vertically and horizontally combining the three indexed formats with the help of the chaos-based cyclic shift. The three scrambled components are separately transformed with the RPFrDCT, in which the generating sequences are determined by the Chirikov standard chaotic map. Arnold transform is used to further enhance the security. Due to the inherent properties of the chaotic maps, the cipher keys are highly sensitive. Additionally, the cipher image is a single color image instead of three color ones, and is convenient for display, storage and transmission due to the reality property of RPFrDCT. Numerical simulations are performed to show the validity of the proposed algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call