Abstract

Multipartite Einstein-Podolsky-Rosen (EPR) steering is an essential resource for secure one-sided device-independent quantum secret sharing. Here, we analyze the EPR steering properties exhibited in three-mode Gaussian states created by four-wave mixing (FWM) in Rubidium atoms combined with a linear beamsplitter and a nonlinear beamsplitter (second FWM), respectively. By quantifying Gaussian steerability based on a measure determined by the covariance matrix of the produced states, we compare the performance of two schemes to achieve one-way, collective, and genuine tripartite steering, as well as the monogamy constraints for distributing steering among three parties. We show that the scheme with nonlinear beamsplitter is feasible to create stronger bipartite steering and genuine tripartite steering and has more flexibility to manipulate the monogamy relation through the cooperation of the two cascaded FWM processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call