Abstract

Increased oxidative stress (OS) and the disruption of the equilibrium between the production of reactive oxygen species and antioxidants are key molecular features of unhealthy aging. OS results in the formation of oxidative posttranslational modifications (PTMs), some of which involve cysteine (Cys) residues in aging proteomes, and specifically, the formation of trioxidized Cys (t-Cys), which leads to permanent protein damage. Recent findings in rodents have uncovered that irregular regulation of t-Cys residues in the aging proteome disrupts homeostatic phosphorylation signaling, resulting in alterations to proteins that are analogous to those caused by phosphorylated serine (p-Ser) residues. This work contextualizes these significant findings and discusses the implications and molecular role(s) of t-Cys in the aging proteome. Furthermore, we present novel data, validating the increase of specific t-Cys sites associated with aging in a blood-related circulating human proteome. The scope and findings included here support the hypothesis that t-Cys residues may serve as important mechanistic and biological markers, warranting further exploration in the context of unhealthy aging and age-related major diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.