Abstract
Increase in the production of triosephosphates has been considered an important factor leading to diabetic complications. It might be expected that like the other short chain monosaccharides, triosephosphates autoxidize producing superoxide radical and alpha,beta-diketones. Since superoxide can also initiate the oxidation of short chain sugars, free radical chain reactions are possible. If such reactions occur in vivo, triosephosphates would be more deleterious to cells lacking superoxide dismutase (SOD) than to normal cells. Here we demonstrate that triosephosphates kill a SOD-deficient Escherichia coli mutant much more than the parental, SOD-proficient strain. The effect is oxygen-dependent and is partially suppressed by aminoguanidine. Increased production of superoxide and diketones appeared to be the cause of triosephosphates toxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.