Abstract

We investigate the trion binding energy in a three-dimensional semiconductor, with bare Coulomb interaction between charges, and effective mass approximation for the electron and hole dispersion relations. This is done by making use of a previously proposed exact method for the three-body problem. The calculations cover the complete range of electron-to-hole mass ratio. We find a perfect agreement with existing variational calculations. Investigating the small and large mass ratio regimes, we build a three parameters interpolating formula for the trion binding energy $E_b(r)$ in terms of the exciton binding energy, where $r$ is the electron to exciton mass ratio. This formula $E_b(r)=0.71347-0.11527 \,r -0.18580\, \sqrt{1-r}\,$, in atomic units, is in full agreement, within our precision, with our numerical results over the complete range of mass ratio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.