Abstract

We investigate the trion binding energy in a three-dimensional semiconductor, with bare Coulomb interaction between charges, and effective mass approximation for the electron and hole dispersion relations. This is done by making use of a previously proposed exact method for the three-body problem. The calculations cover the complete range of electron-to-hole mass ratio. We find a perfect agreement with existing variational calculations. Investigating the small and large mass ratio regimes, we build a three parameters interpolating formula for the trion binding energy $E_b(r)$ in terms of the exciton binding energy, where $r$ is the electron to exciton mass ratio. This formula $E_b(r)=0.71347-0.11527 \,r -0.18580\, \sqrt{1-r}\,$, in atomic units, is in full agreement, within our precision, with our numerical results over the complete range of mass ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.