Abstract

Designing nanostructured arrays of two-dimensional surfaces and interfaces is a versatile approach to increasing their photoelectrochemical activity. Here, phosphorus (P)-incorporated nanostructured carbon nitride (h-PCN) with an enlarged surface area is fabricated by employing trioctylphosphine oxide (TOPO) as a dopant precursor for visible-light-driven photoelectrochemical water splitting to produce hydrogen. The structural, morphological, and electronic properties of the photocatalyst have been characterized through various physicochemical techniques. We show that the incorporation of P into the g-C3N4 framework enhances light absorption over broad regimes, charge separation, and migration, as well as the specific surface area, showing excellent photocurrent enhancement (5.4 folds) in the cathodic direction as compared to bulk g-C3N4. Moreover, the photocathode shows 3.3-fold enhancement in current at zero biased potential. Without using any cocatalyst, the photoelectrodes produced 27 μmol h-1 of H2 and 13 μmol h-1of O2 with 95% faradic efficiency. The excellent photoelectrochemical behavior toward water-splitting reactions by the photoelectrode is attributed to the synergistic effect of P incorporation and active sites emerging from the nanostructured architecture of the material. This work demonstrates the facile fabrication of nanostructured P-incorporated g-C3N4 toward water-splitting reactions to produce hydrogen without using a cocatalyst in a simple and cost-effective way.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call