Abstract

A general route for the preparation of a series of dianionic Mo3S7 cluster complexes bearing dithiolate or diselenolate ligands, namely, [Mo3S7L3](2-) (where L = tfd (bis(trifluoromethyl)-1,2-dithiolate) (4(2-)), bdt (1,2-benzenedithiolate) (5(2-)), dmid (1,3-dithia-2-one-4,5-dithiolate) (6(2-)), and dsit (1,3-dithia-2-thione-4,5-diselenolate) (7(2-))) is reported by direct reaction of [Mo3S7Br6](2-) and (n-Bu)2Sn(dithiolate). The redox properties, molecular structure, and electronic structure (BP86/VTZP) of the 4(2-) to 7(2-) clusters have also been investigated. The HOMO orbital in all complexes is delocalized over the ligand and the Mo3S7 cluster core. Ligand contributions to the HOMO range from 61.67% for 4(2-) to 82.07% for 7(2-), which would allow fine-tuning of the electronic and magnetic properties. These dianionic clusters present small energy gaps between the HOMO and HOMO-1 orbitals (0.277-0.104 eV). Complexes 6(2-) and 7(2-) are oxidized to the neutral state to afford microcrystalline or amorphous fine powders that exhibit semiconducting behavior and present antiferromagnetic exchange interactions. These compounds are new examples of the still rare single-component conductors based on cluster magnetic units.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.