Abstract

ABSTRACT Using recent empirical constraints on the dark matter halo–galaxy–supermassive black hole (SMBH) connection from z = 0–7, we infer how undermassive, typical, and overmassive SMBHs contribute to the quasar luminosity function (QLF) at z = 6. We find that beyond Lbol = 5 × 1046 erg s−1, the z = 6 QLF is dominated by SMBHs that are at least 0.3 dex above the z = 6 median M•–M* relation. The QLF is dominated by typical SMBHs (i.e. within ±0.3 dex around the M•–M* relation) at Lbol ≲ 1045 erg s−1. At z ∼ 6, the intrinsic M•–M* relation for all SMBHs is slightly steeper than the z = 0 scaling, with a similar normalization at $M_* \sim 10^{11} \, \mathrm{M}_\odot$. We also predict the M•–M* relation for z = 6 bright quasars selected by different bolometric luminosity thresholds, finding very good agreement with observations. For quasars with Lbol > 3 × 1046 (1048) erg s−1, the scaling relation is shifted upwards by ∼0.35 (1.0) dex for 1011M⊙ galaxies. To accurately measure the intrinsic M•–M* relation, it is essential to include fainter quasars with Lbol ≲ 1045 erg s−1. At high redshifts, low-luminosity quasars are thus the best targets for understanding typical formation paths for SMBHs in galaxies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call