Abstract
The remarkable room temperature structure of trimethyltin hydroxide comprises a total of 32 crystallographically independent SnMe3OH units arranged in four independent coordination polymer strands. We suggest that a Z′ = 4 value is more appropriate than Z′ = 32, reflecting the polymeric structure of the compound. DSC, single crystal and XRPD studies show that on cooling below ca.160 K the structure undergoes a first order phase change to a symmetric Z′ = 1 structure with just one crystallographically unique SnMe3OH unit. The phase change is reversible, and on warming past 176 K the high Z′ structure is regenerated, in an endothermic transition. The Z′ = 1 and 4 structures are an enantiotropic pair, and trimethyltin hydroxide represents a case where the higher Z′ structure is the most stable form at high temperature with the high Z′ value possibly arising from a consideration of the dynamics of the crystal as a whole.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.