Abstract
Glioma stem cells (GSCs), which are known for their therapy resistance, play a substantial role in treatment inefficacy for glioblastoma multiforme (GBM). TRIM37, a member of the tripartite motif (TRIM) protein family initially linked to a rare growth disorder, has been recognized for its oncogenic role. However, the mechanism by which TRIM37 regulates tumor growth in glioma and GSCs is unclear. For the in vitro experiments, gene expression was measured by western blotting, RT-qPCR, and immunofluorescence. Cell viability was detected by CCK-8, and cell apoptosis was detected by flow cytometry. The interaction between Enhancer of Zeste Homolog 2 (EZH2) and TRIM37 was verified by co-immunoprecipitation (Co-IP). The interaction between EZH2 and the PTCH1 promoter was verified using dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP). For the in vivo experiments, an orthotopically implanted glioma mouse model was used to validate tumor growth. The expression of TRIM37 is higher in GSCs compared with matched non-GSCs. TRIM37 knockdown promotes apoptosis, decreased stemness in GSCs, and reduces tumor growth in GSCs xenografts of nude mice. TRIM37 and EZH2 co-localize in the nucleus and interact with each other. TRIM37 knockdown or EZH2 inhibition downregulates the protein expressions associated with the Sonic Hedgehog (SHH) pathway. EZH2 epigenetically downregulates PTCH1 to activate SHH pathway in GSCs. TRIM37 maintains the cell growth and stemness in GSCs through the interaction with EZH2. EZH2 activates SHH stem cell signaling pathway by downregulating the expression of SHH pathway suppressor PTCH1. Our findings suggest that TRIM37 may be a potential therapeutic target for GBM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.