Abstract

Glioblastoma (GBM) is the most lethal primary brain tumor in adults and harbors a subpopulation of glioma stem cells (GSCs). Enhancer of Zeste Homolog 2 (EZH2), a histone lysine methyltransferase, deeply involves in the stemness maintenance of GSC. However, the precise mechanism and therapeutic potential remain elusive. We postulated that the interactome of EZH2 in GSC is unique. Therefore, we performed proteomic and transcriptomic research to unveil the oncogenic mechanism of EZH2. Immunoprecipitation and mass spectrometry were used to identify proteins that co-precipitate with EZH2. We show that EZH2 binds to heterochromatin protein 1 binding protein 3 (HP1BP3) in GSCs and impairs the methylation of H3K9. Overexpression of HP1BP3 enhances the proliferation, self-renewal and temozolomide (TMZ) resistance of GBM cells. Furthermore, EZH2 and HP1BP3 co-activate WNT7B expression thereby increasing TMZ resistance and stemness of GBM cells. Importantly, inhibition of WNT7B autocrine via LGK974 effectively reverses the TMZ resistance. Our work clarifies a new oncogenic mechanism of EZH2 by which it interacts with HP1BP3 and epigenetically activates WNT7B thereby promoting TMZ resistance in GSCs. Our results provide a rationale for targeting WNT/β-catenin pathway as a promising strategy to overcome TMZ resistance in GSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call