Abstract

Tripartite motif-containing protein 31 (TRIM31), an E3 ubiquitin ligase of the tripartite motif family, plays an important role in the innate immune response. It can reduce the activity of the nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome. However, little information is about glucose metabolic health of TRIM31-deficient mice, and investigations about gut microbiota in TRIM31-deficient mice is limited. Thus, we aimed to compare glucose metabolic parameters, gut microbiota composition and inflammatory cytokine levels between TRIM31−/− and wild-type (WT) mice, and further investigate whether or not certain gut microbiota taxon correlates with specific metabolic parameters and inflammation cytokines in TRIM31-deficient mice. TRIM31−/− mice showed glucose intolerance and insulin resistance, with a significant difference in gut microbiota composition, characterized by increased abundance of Prevotellaceae and Veillonellaceae. TRIM31−/− mice with impaired glucose metabolism was accompanied by elevated serum tumor necrosis factor-α (TNF-α) and interleukin 1β (IL-1β) concentrations, as well as upregulated caecal TNF-α, IL-1β, caspase-1, and NLRP3 expressions. Furthermore, elevated p-IRS-1/IRS-1 protein expression, and decreased Akt Thr308 phosphorylation were observed in TRIM31−/− mice. Prevotellaceae abundance was positively associated with caecal IL-1β mRNA expression, and Veillonellaceae was associated with higher TNF-α mRNA expression and serum insulin concentration. In conclusion, our study is novel in showing that TRIM31 deficiency is associated with impaired glucose metabolism and disrupted gut microbiota in mice. This study contributes to the theoretical foundation on the potential relationship between TRIM31 deficiency and the development of abnormal glucose metabolism.

Highlights

  • The prevalence of obesity and type 2 diabetes mellitus (T2DM) is increasing dramatically

  • Our study is novel in showing that Tripartite motif-containing protein 31 (TRIM31) deficiency is associated with impaired glucose metabolism and disrupted gut microbiota in mice

  • Giving that TRIM31 plays a central role in regulating NLRP3 inflammasome activity and NLRP3 inflammasome activation can increase the risks of metabolic diseases, we aimed to determine glucose metabolic health, gut microbiota composition, and inflammatory cytokine levels in TRIM31−/− mice, and further investigate whether or not certain gut microbiota taxon correlates with specific metabolic parameters and inflammation cytokines in TRIM31−/− mice

Read more

Summary

Introduction

The prevalence of obesity and type 2 diabetes mellitus (T2DM) is increasing dramatically. T2DM are strongly influenced by both genetic and environment factors (Hossain et al, 2007; Doria et al, 2008) It showed that low-grade chronic inflammationplayed an important role in the TRIM31 Deficiency and Disrupted Gut Microbiota pathogenesis of insulin resistance and T2DM (Wellen and Hotamisligil, 2005). It indicated that environmental factors and host genetics can interact to control gut microbiota composition, which can contribute to the development of insulin resistanc and T2DM by triggering the immune response (Macdonald and Monteleone, 2005). Tripartite motif (TRIM) family proteins are implicated in the negative regulation of innate immune responses (Versteeg et al, 2014)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call