Abstract

Thyroid hormone participates in lipid metabolism regulation. However, the effects on triacyleride or triacylglycerol metabolism are complex and not fully clarified yet. In this study, we try to identify novel thyroid hormone-targeting lipogenic metabolic genes and analyze their molecular regulative mechanism. Thirty-five promoters of twenty-nine human lipogenic regulative enzyme genes were constructed into pXP1 luciferase reporter plasmid (PFK2/FBP2-luc) and transfected into HeGP2 cells, respectively. Gene expression induced by triiodothyronine (T3) was detected by luciferase assay. The T3-activated gene promoter was then analyzed by sequence analysis, deletion and mutation, and electrophoretic mobility shift assay (EMSA). After 10 nM T3 stimulation for 36 h, phosphogluconate dehydrogenase, malic enzyme, Glycerol-3-phosphate acyltransferase (GPAT) 3, and 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) 2 were significantly activated, respectively. A AGGTCA-like-direct-repeat-4 consensus thyroid hormone response element (DR4-TRE)-like sequence was found in the GPAT3 promoter, which was then verified to be necessary for T3-induced GPAT3 activation by gene deletion and mutation analysis. EMSA further identified that T3-thyroid receptor (TR) α-retinoid-X receptor (RXR) complex directly bound on the GPAT3 promoter. Triiodothyronine could activate the GPAT3 through DR4-TRE-like sequence binding to participate in lipogenic regulation. AGPAT2 may be another thyroid hormone target enzyme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call