Abstract

Synthetic chemistry enables a bottom-up approach to quantum information science, where atoms can be deterministically positioned in a quantum bit or qubit. Two key requirements to realize quantum technologies are qubit initialization and read-out. By imbuing molecular spins with optical initialization and readout mechanisms, analogous to solid-state defects, molecules could be integrated into existing quantum infrastructure. To mimic the electronic structure of optically addressable defect sites, we designed the spin-triplet, V3+ complex, (C6F5)3trenVCNtBu (1). We measured the static spin properties as well as the spin coherence time of 1 demonstrating coherent control of this spin qubit with a 240 GHz electron paramagnetic resonance spectrometer powered by a free electron laser. We found that 1 exhibited narrow, near-infrared photoluminescence (PL) from a spin-singlet excited state. Using variable magnetic field PL spectroscopy, we resolved emission into each of the ground-state spin sublevels, a crucial component for spin-selective optical initialization and readout. This work demonstrates that trigonally symmetric, heteroleptic V3+ complexes are candidates for optical spin addressability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call