Abstract
Cytosolic lipid droplets are now recognized as dynamic organelles. This review summarizes our current understanding of the mechanisms involved in the formation of lipid droplets, the importance of lipid droplet-associated proteins and the link between lipid droplet accumulation and development of insulin resistance. Lipid droplets are formed as primordial droplets and they increase in size by fusion. This fusion process requires the alpha-soluble N-ethylmaleimide-sensitive factor adaptor protein receptor SNAP23, which is also involved in the insulin-dependent translocation of a glucose transporter to the plasma membrane. Recent data suggest that SNAP23 is the link between increased lipid droplet accumulation and development of insulin resistance. Lipid droplets also form tight interactions with other organelles. Furthermore, additional lipid droplet-associated proteins have been identified and shown to play a role in droplet assembly and turnover, and in sorting and trafficking events. Recent studies have identified a number of key proteins that are involved in the formation and turnover of lipid droplets, and SNAP23 has been identified as a link between accumulation of lipid droplets and development of insulin resistance. Further understanding of lipid droplet biology could indicate potential therapeutic targets to prevent accumulation of lipid droplets and associated complications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.