Abstract

The interaction of humans and robots (HRI) is of great relevance for the field of neurorobotics as it can provide insights on motor control and sensor processing mechanisms in humans that can be applied to robotics. We propose a spiking neural network (SNN) to trigger motion reflexes on a robotic hand based on human EMG data. The first part of the network takes EMG signals to measure muscle activity, then classify the data to detect which finger is active in the human hand. The second part triggers single finger reflexes using the classification output. The finger reflexes are modeled with motion primitives activated with an oscillator and mapped to the robot kinematic. We evaluated the SNN by having users wear a non-invasive EMG sensor, record a training dataset, and then flex different fingers, one at a time. The muscle activity was recorded using a Myo sensor with eight channels. EMG signals were successfully encoded into spikes as input for the SNN. The classification could detect the active finger to trigger motion generation of finger reflexes. The SNN was able to control a real Schunk SVH robotic hand. Being able to map myo-electric activity to functions of motor control for a task, can provide an interesting interface for robotic applications, and also to study brain functioning. SNN provide a challenging but interesting framework to interact with human data. In future work the approach will be extended to control a robot arm at the same time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.