Abstract
Cation exchange (CE) reactions have emerged as a technologically important route, complementary to the colloidal synthesis, to produce nanostructures of different geometries and compositions for a variety of applications. Here it is demonstrated with first-principles simulations that an interstitial impurity cation in CdSe nanocrystals weakens nearby bonds and reduces the CE barrier in the prototypical exchange of Cd2+ ions by Ag+ ions. A Wannier function-based tight binding model is employed to quantify microscopic mechanisms that influence this behavior. To support our model, we also tested our findings in a CE experiment: both CdSe and interstitially Ag-doped CdSe nanocrystals (containing 4% of Ag+ ions per nanocrystal on average) were exposed to Pb2+ ions at room temperature and it was observed that the exchange reaction proceeds further in doped nanocrystals. The findings suggest doping as a possible route to promote CE reactions that hardly undergo exchange otherwise, for example, those in III-V semiconductor nanocrystals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.