Abstract
We have investigated the young stellar population in and around SFO 38, one of the massive globules located in the northern part of the Galactic HII region IC 1396, using the Spitzer IRAC and MIPS observations (3.6 to 24 micron) and followed up with ground based optical photometric and spectroscopic observations. Based on the IRAC and MIPS colors and H-alpha emission we identify ~45 Young Stellar Objects (Classes 0/I/II) and 13 probable Pre Main Sequence candidates. We derive the spectral types (mostly K- and M-type stars), effective temperatures and individual extinction of the relatively bright and optically visible Class II objects. Based on optical photometry and theoretical isochrones, we estimate the spread in stellar ages to be between 1--8 Myr with a median age of 3 Myr and a mass distribution of 0.3--2.2 Msun with a median value around 0.5 Msun. Using the width of the H-alpha emission line measured at 10% peak intensity, we derive the mass accretion rates of individual objects to be between 10^{-10} to 10^{-8} Msun/yr. From the continuum-subtracted H-alpha line image, we find that the H-alpha emission of the globule is not spatially symmetric with respect to the O type ionizing star HD 206267. We clearly detect an enhanced concentration of YSOs closer to the southern rim of SFO~38 and identify an evolutionary sequence of YSOs from the rim to the dense core of the cloud, with most of the Class II objects located at the bright rim. The YSOs appear to be aligned along two different directions towards the O6.5V type star HD 206267 and the B0V type star HD 206773. This is consistent with the Radiation Driven Implosion (RDI) model for triggered star formation. (Abridged)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have