Abstract
Polymeric micelles and vesicles have emerged as versatile drug carriers during the past decades. Furthermore, stimuli-responsive systems are developed whose properties change after applying certain external triggers. Therefore, a triggered release of drugs from stimuli-sensitive micelles and vesicles has become an interesting challenge in the pharmaceutical field. Polymeric micelles or vesicles are mainly composed of amphiphilic block copolymers that are held together in water due to strong hydrophobic interactions between the insoluble hydrophobic blocks, thus forming a core–shell or bilayer morphology. Consequently, destabilisation of these assemblies is induced by increasing the polarity of the hydrophobic blocks. Preferably, this process should be the consequence of an external trigger, or take place in a certain time frame or at a specific location. A variety of mechanisms has recently been described to accomplish this transition, which will be reviewed in this paper. These mechanisms include the destabilisation of polymeric micelles and vesicles by temperature, pH, chemical or enzymatic hydrolysis of side chains, oxidation/reduction processes, and light.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.