Abstract

Ruptures of macrophage-rich atherosclerotic plaques in the coronary arteries are the main reason for heart attack. Targeted therapeutic interventions with an inhibitory effect on the macrophages promise to be beneficial, but currently available drugs such as statins achieve event reductions of only 30%. Dose-limiting adverse effects in remote organs prohibit achieving higher drug levels known to have strong inhibitory effects on macrophages. Receptor-specific targeting using statin-loaded nanometer-sized triblock copolymer vesicles with targeting moieties might allow high-dose treatment for improved efficacy, while minimizing toxicity in other cells. Vesicle uptake by target cells but not other cell types and slow intracellular content release was observed. A major improvement in biologic efficacy was observed for polymer vesicles compared to free drug, whereas no increased cytotoxicity was observed in muscle cells. Such high-dose, targeted therapy of statins through cell-specific polymer vesicles allows novel treatment paradigms not only for atherosclerosis, but appears promising for a wide range of drugs and diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call