Abstract

Rheumatoid Arthritis (RA), one of the leading causes of disability due to progressive autoimmune destruction of synovial joints, affects ∼1% of the global population. Standard therapy helps in reducing inflammation and delaying the progression of RA but is limited by non-responsiveness on long-term use and several side-effects. The conventional nanocarriers (CNCs), to some extent, minimize toxicity associated with free drug administration while improving the therapeutic efficacy. However, the uncontrolled release of the encapsulated drug even at off-targeted organs limits the application of CNCs. To overcome these challenges, trigger-responsive engineered nanocarriers (ENCs) have been recently explored for RA treatment. Unlike CNCs, ENCs enable precise control over on-demand drug release due to endogenous triggers in arthritic paws like pH, enzyme level, oxidative stress, or exogenously applied triggers like near-infrared light, magnetic field, ultrasonic waves, etc. As the trigger is selectively applied to the inflamed joint, it potentially reduces toxicity at off-target locations. Moreover, ENCs have been strategically coupled with imaging probe(s) for simultaneous monitoring of ENCs inside the body and facilitate an 'image-guided-co-trigger' for site-specific action in arthritic paws. In this review, the progress made in recently emerging 'trigger-responsive' and 'image-guided theranostics' ENCs for RA treatment has been explored with emphasis on the design strategies, mechanism, current status, challenges, and translational perspectives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.